

Himmelhausmattesteg, rope net suspension bridge, Switzerland

Fabian Graber

Head of Engineering, Member of the Management MSc. Civil Engineer ETH / SIA | Dipl. Architect FH fabian.graber@jakob.ch

jakob.com

(Presentation based on Burgdorfer Brückenbautag 2022; Bau und Wissen)

Rope Engineering from Emmental, Switzerland

jakob.com

Rope net | Rope net structures

<image><image><image><text><text><text><text><text><text>

Rope net

- Opening angle: α
- Mesh geometry: *W*; *H*
- Net rope Ø
- Node type: with sleeves / sleeveless
- Steel grade: rope 1570-EN1.4401 / sleeves EN1.4404

Applications | Rope net structures

Zoo enclosures

Greening structures

Safety structures

Bridge constructions

Modeling | Rope Net Structures

1. Method - "Real" ropes		2.	Method - "Ideal" ropes	3. Method - Orthotropic membrane			
•	Beam elements with a real, representative bending stiffness Rope deviation at the sleeve or tensioning process is taken into account	•	Ideal, straight rope elements Simplified geometry in the tensioned stage	•	Orthotropic membrane with linear-elastic material model		
			6 mm				
	Strengths / Weaknesses						
+	Exact determination non-linearity of the single mesh-diamond	-	Simplification of the single mesh-diamond with linear-elastic material model	+ -	Reduced effort for form finding For point loads		
Applications							
•	Detailed investigations: Initial stressing in the tensioned stage, local stress analysis around sleeves	•	Loads in plane or perpendicular to the network plane	•	Structural system modeling of large-scale spatial free-forms, basis for patterning		

[Drayer D.; Jakob AG]

Dimensioning | Rope net structures

Applied actions | Rope net structures

Bridge construction | Rope / net structures

Himmelhausmattesteg | Case study

Trubschachen, 2020 Slow traffic bridge (pedestrian and cycle bridge)

Client: **Municipality of Trubschachen** Design / Engineering; supply rope / net construction: **Jakob AG** Design of foundation: **Wüthrich Ing. AG** Contractor: **Thuner AG** Steel and metal supplier: **Von Niederhäusern AG**

Footpath to school - Hasenlehn

Regional cycle routes

fig.: Situation; [maps.geo.admin.ch]

Structural design approach | Himmelhausmattesteg

Structural design approach | Himmelhausmattesteg

Tensioning of suspension cable to bridge girder \rightarrow system stiffness

Geometry of pylons→ plane rope net, lift in bridge girder

Double Y-bracing \rightarrow horizontal bracing, reduction of span rope net beams

Structural description | Himmelhausmattesteg

Tectonics | Himmelhausmattesteg

Dimensioning | Himmelhausmattesteg

Step 1

- Creation of access, installation site
- Foundation

• Erecting pylons with auxiliary struts ①

Step 2.2

- Mounting tie-back rods 2
- Horizontal pylon coupling cable 3
- Adjustment pylon alignment

Step 3

- Mounting temporary suspension ropes
 with hangers
 pull in along
- Installation of suspension ropes (temporary laterally tensioned)

- Longitudinal adjustment of pin connection at pylon locations
- Attachment of bolts at connection bridge girder pylon
- Lifting bridge girder with mobile crane
- Coupling to temporary cable structure
 - Connecting hangers to auxiliary lifting beams 10
 - Applying tension to hanger / geometry check
 - Relieving the load on the mobile crane
- Approval of accessibility of bridge girders for further assembly steps

• Assembly edge tube extension 13

jakob.com

5

- Attachment of components for net edge structure
- Alignment and temporary tensioning of the nets (6)
- Attachment of rope net tensioning elements / tension belts
- Unloading chain tension members 10
- Lacing rope net
- Dismantling temporary rope net tensioning elements
- Dismantling chain hoists

Constructive design | Himmelhausmattesteg

Adjustment devices

Adjustment devices for mounting

Adjustment devices for long-term effects regarding loss of clamping force

Adjustment for the bridge girder

Net set up

Blocking sleeve on binding rope @ 6th eyelet = approx. 500 mm

Net corner design, reduction of force peaks

Patterning | Himmelhausmattesteg

fig.: patterning, schematic figure

Dynamic behavior | Himmelhausmattesteg

		Natural frequency <i>[Hz</i>]	HIVOSS, [a]	$\left[\frac{m}{s^2}\right]$	HIVOSS, [a]
Walking	vertical vibration	2.9	not critical	1.0	CL 2-3 medium / minimum $a_{limit,vertical} \leq 1.0$
Marching	vertical vibration	2.2	critical	-	not acceptable
Running	vertical vibration	2.8	critical	16	not acceptable

- Number of pedestrians: 9 + 1 persons -> 0.2 P/m² (TC2)
- Stand-by vibration: FE model: 2.7 Hz

Monitoring | Himmelhausmattesteg

Measurement	Location	Z		h		f		
		[kN]		[mm]		[mm]		
02.11.2020	Church	74						Construction stage, side ready laced
02.11.2020	Ilfis	78						
23.02.2021	Church			1155		303		Calibrating bridge after completion
23.02.2021	Ilfis			1146		295		
10.08.2022	Church	69.4	94 %	1153	100 %	301	99.8 %	Unloaded (2 persons)
10.08.2022	Ilfis	70.6	91 %	1147	100 %	280	100.1 %	

fig.: Tractel Dynarope, rope force measuring device

(Erection 2020)		Construction costs
Steel structure (incl. installation)	72 000 EUR	
Construction works	120 000 EUR	
Ropes / nets (incl. installation)	55 000 EUR	Cables /
	247 000 EUR	net Steel 22% structure 29%
Key figures		
based on bridge area $A = 58 m^2$	4 300 EUR/m ²	Construction
based on bridge length $l = 26 m$	9 500 EUR/m	works
Alternative conventional suspension bridge	~ – 10 000 EUR	
 + Fall protection Connections suspension / hangers (26 pcs.) 	~ + 30 000 EUR	
- Net area, reduction of net installation costs	~ - 20'000 EUR	

Sustainability | Himmelhausmattesteg

Necessity	safer way to school, crossing river for pedestrian / cyclist
Minimization	only structural elements, light-weight structure
Regenerability	only by melting
Robustness	by used material, constructive design
Reuseability	design approach to use standard components (possibility of sea freight \rightarrow C0 ₂ - impact) design-to-disassembly
Multifunctionality	use for pupils/pedestrians/cyclists, power supply cables
Adaptability	use of bolted connections and open cross-sections (except pylons)

Light-weight structure steel: 8'500 kg, gratings: 2'800 kg

What's next? | Small spans

Webnet bridge in Lugano - Parco via Pico, 2022 Span: 15 m

Jakob Rope Systems for HINNEN playground equipment

What's next? | Big spans

Structural proposal suspension bridge Disentis, 2024 Span: 270 m

JV – Jakob Rope Systems. Von Rotz&Wiedemar. Pfeifer

fig.: Visualizations of the proposed structure of the Disentis suspension bridge

Bridges with Webnet in NL

jakob.com

Literature

- [1] Wagner R; Bauen mit Seilen und Membranen, chapter 3.3; Beuth Verlag GmbH, 2016.
- [2] Hivoss, RFS2-CT-2007-00033; Human induced vibrations of steel structures; Guide for the design of pedestrian bridges; 10.9.2008.